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ABSTRACT

This report investigates the estimation of bit error rates in digital communi-
cations, motivated by recent work in [6]. In the latter, bounds are used to
construct estimates for bit error rates in the case of differentially coherent
quadrature phase-keying with Gray coding over an additive white Gaussian
noise channel. By analysing Marcum’s Q-Function, which is an integral part
of bit error rate expressions, we derive more direct methods of estimation,
including least squares and truncated series approximations. Accurate and
efficient estimates for bit error rates are then proposed.
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Approximation of Bit Error Rates in Digital
Communications

EXECUTIVE SUMMARY

DSTO is a sponsoring partner in the Hypatia Scholarship scheme for mathematically
talented women, and as such, through Electronic Warfare and Radar Division’s Microwave
Radar Branch, sponsored the second author of this report to participate in a short research
project through the Summer Vacation Scholarship Program. Named after the famous
female mathematician Hypatia, the scheme provides both financial and mentoring assets
to encourage women to pursue their interests in the mathematical sciences. The work
presented here is a report on this project, jointly undertaken by Graham V. Weinberg and
Hypatia Scholar Sharon Lee, over the 2006/2007 Summer Period.

This project involves estimation of the Marcum Q-Function, which is an important tool in
digital signal processing. It is of interest to both the radar and communications research
communities, and has been investigated by the first author quite extensively. Here we
examine bit error rate estimation in digital communications, which is intimately related
to this function. We show that a method applied in a recent publication, which uses
bounds to estimate bit error rates, can be improved considerably by using more direct
techniques of estimation.

This work is relevant to the long range research efforts into radar detection issues associated
with Task AIR 04/206, EWRD Support for AP-3C E/LM2022 Radar System. Although
focusing on a communications application, the results transfer directly to the latter. The
technique examined here will be useful for engineers and scientists looking for efficient and
accurate approximations for intractable integrals.
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1 Introduction

This report examines the estimation of bit error rates (BERs) in digital communications
[1]. Specifically, we will investigate the recent work of [6] on using bounds to construct
approximations for differential quaternary phase shift keying (DQPSK) transmission with
Gray coding over an additive white Gaussian noise channel (AWGNC) [14]. In [6], an
estimate of this BER is constructed by averaging a lower and upper bound. We show
that more direct methods can be applied to estimate the BER, and in some cases more
accurate results are obtained.

The BER is a fundamental performance measure of a system, quantifying the reliability
or integrity of a received signal [1]. The instantaneous BER, for many practical com-
munication systems, in particular, wireless communications systems, can be written as a
function involving the standard Marcum Q-Function ([11], [12] and [13]). This famous
function has received much attention in the digital signal processing literature, due to its
intractability. Hence, many estimation schemes have been proposed, employing techniques
such as Adaptive Simpson Quadrature (ASQ) [10], Taylor Series approximations [16], the
construction of lower and upper bounds ([4] — [9] and [19]) and the Monte Carlo scheme
([23] and [24]).

1.1 Bit Error Rates and Marcum’s Q-Function

We specialise our analysis to the case considered in [6], as described above. In this scenario,
the instantaneous BER is described by

BER(γ|a, b) := Q(a√γ, b√γ)− 1
2
e−

1
2(a

2+b2)γI0(abγ), (1)

where constants a and b depend on the modulation/demodulation format, and γ is the
total instantaneous signal to noise ratio per bit, and Q(α,β) is the standard Marcum
Q-Function, defined by

Q(α,β) :=
∞

β
xe−

1
2(x

2+α2)I0(αx)dx, (2)

and I0(·) is the modified Bessel function of order zero. In the case considered in [6],

a = 2−√2 and b = 2 +
√
2, so that b > a. The key to estimating (1) is to construct

good approximations of (2).

Using lower and upper bounds on (2), derived in [5], one can show that

BER(γ|a, b) ≈ π

8

I0(abγ)

exp(abγ)

√
γ(a+ b)Erfc

γ

2
(b− a) , (3)

where Erfc is the complementary error function (see [6] for details).

1
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Using asymptotic approximations, [6] also proposed the following approximate expression,
for large values of γ:

BER(γ|a, b) ≈ 1√
8πab

b+ a

b− ae
− − (b−a)2

2

=

√
2 + 1

8π
√
2

1√
γ
e[−(2−

√
2)γ]. (4)

Although (3) and (4) produce good results, we will investigate a more direct approach
to the estimation of the BER. The Least Squares (LS) approach is an interpolation tech-
nique, which may be applied usefully to facilitate the estimation of (2). Additionally,
we will consider Taylor Series approximations applied directly to (2). Before considering
estimators, we introduce a number of useful representations of the Marcum Q-Function.

1.2 Integral Representations of Marcum’s Q-Function

A number of new representations of (2) have been derived in [22]. In the spirit of [4],
these convert the Marcum integral to one on a finite domain, with penalty terms added.
Converting the Marcum integral (2) to one on a finite domain has the potential to improve
the estimation process, since it is somewhat easier to estimate an integral on a finite
domain.

It can be shown that

Q(a, b) =
1

2
1 + e−a

2
I0(a

2) +
a

b
xe−

1
2(x

2+a2)I0(ax)dx. (5)

Additionally, by an application of the symmetry relation [15] of the Marcum Q-Function
to (5), one can derive

Q(a, b) =
1

2
1− e−b2I0(b2) + e− 1

2(a
2+b2)I0(ab)

−
b

a
xe−

1
2(x

2+b2)I0(bx)dx. (6)

Further details of the derivation of (5) and (6) can be found in [22].

It is, of course, not difficult to reduce (2) to an integral over a finite domain. Clearly we
can write

Q(a, b) = 1−
b

0
xe−

1
2(x

2+a2)I0(ax)dx. (7)

Also, one can apply the Marcum symmetry relation [15] to (7) to produce

Q(a, b) = e−
1
2(a

2+b2)I0(ab)−
a

0
xe−

1
2(x

2+b2)I0(bx)dx. (8)

2
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We will construct a number of estimators based upon (5), (6) and (8), using the Least
Squares Method.

1.3 Least Squares Method

The Least Squares Method (LSM) [3] fits a smooth curve, with minimum error, to a given
set of data points. Error, in this case, refers to the sum of the squares of the errors
(SSE) or the residuals of the points from the curve. To fit a polynomial of degree n,
Pn(x) = αnx

n + αn−1xn−1 + · · ·+ α1x+ α0, to a set of m data points, where m ≥ n+ 1,
the coefficients of the polynomial are determined such that the SSE is minimised, where

SSE =
m

k=0

[Pn(xk)− yk]2 , (9)

and (xk, yk), k = 1, . . . ,m, are the data points.

The minimum SSE is obtained by taking the partial derivatives of (9) and equating them
to zero. The resultant set of equations are known as the normal equations [3]. The
coefficients are obtained by solving the normal equations.

α0n+ α1

m

k=0

xk + · · ·+ αn

m

k=0

xnk =
m

k=0

yk

α0

m

k=0

xk + α1

m

k=0

x2k + · · ·+ αn

m

k=0

xn+1k =
m

k=0

xkyk

· · ·

α0

m

k=0

xnk + α1

m

k=0

xn+1k + · · ·+ αn

m

k=0

x2nk =
m

k=0

xnkyk. (10)

1.4 Contributions of this Report

This report explores the idea of applying LS approximations to evaluate the BER Function
(1), achieved by estimating the Marcum Q-Function (2). Instead of applying bounds to
estimate the Marcum Q-Function, as in [6], we show that more direct methods can be
applied to produce estimators. Specifically, six estimators can be constructed from the
finite interval representations of the Marcum Q-Function. In particular, three of the
estimators use an exponential function with a quadratic polynomial power to estimate the
modified Bessel function. The second group of three fit a polynomial of degree 5 to the
entire integrand. These six estimators are compared to the results obtained from ASQ.
Speed and accuracy performance are also analysed. We attempt to identify an optimal LS
estimator.

3
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In addition, we examine a Taylor Series approximation of the BER function. Its perfor-
mance is also compared with ASQ and the best performing LS estimator.

4
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2 Numerical Approximation Schemes

A number of estimators of the BER, based on the LS scheme and Taylor Series approach,
are now introduced. The LS estimators are constructed by substituting functional ap-
proximations to the integrands in (2), (5), (6) and (8). In some cases, the modified Bessel
function is approximated by an exponential function, while in others, we apply a polyno-
mial approximation to the entire integrand. We also introduce a single estimator based

upon a truncated Taylor Series. Throughout we assume, as in [6], that a = 2−√2 and
b = 2 +

√
2, and hence b > a.

The key problem in terms of estimation of the Marcum Q-Function is the presence of the
modified Bessel function in the integrand. Hence, we apply functional approximations to
eliminate it from the integrand, to facilitate integration. Many of the proposed functional
approximations suggested below have been produced by considering suitable fits to the
Bessel function by an appropriate polynomial. This will be done by using Least Squares
fits.

2.1 Least Squares on a Finite Interval

To begin, we consider approximating the modified Bessel Function with an exponential
function of the form f(x) = eαx

2+βx+γ on a specified finite interval. This is achieved by
fitting a quadratic function, αx2+βx+ γ, to log(I0(x)), where the coefficients α, β and γ
are real constants. Applying the LS scheme, the coefficients can be determined using the
method outlined in Section 1.3. This scheme requires sequential estimation of the values
of the modified Bessel Function. However, this is not viewed as a shortcoming because
the tendency in the literature is to construct approximations of the integral (2) in terms
of such functions anyway.

2.1.1 An Estimator Based on Integral Representation (6): E1

In view of (6), we can fit an exponential function to the modified Bessel function component
of the integral. Note that

b

a
x e

1
2(x

2+b2)eαx
2+βx+γdx

= e−
1
2
b2+γ+ β2

2−4α
b

a
xe−(

1
2
−α)(x− β

1−2α)
2

dx

=
δ

1− 2α e−(
1
2
−α)(a− β

1−2α)
2

− e−( 12−α)(b− β
1−2α)

2

+
δβ
√
π

(2− 4α) 1
2 − α

Erf
1

2
− α b− β

1− 2α

5
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− Erf 1

2
− α a− β

1− 2α , (11)

where δ = e−
1
2
b2+γ+ β2

2−4α and Erf(·) is the error function

Erf(x) =
2√
π

x

0
e−t

2
dt. (12)

Hence, applying (11) to (6), and then applying the result to (1), we arrive at the BER
estimator:

E1 =
1

2
1− e−b2I0(b2) + 1

2
e−

1
2(a

2+b2)I0(ab)

− δ

1− 2α e−(
1
2
−α)(a− β

1−2α)
2

− e−( 12−α)(b− β
1−2α)

2

+
δβ
√
π

(2− 4α) 1
2 − α

Erf
1

2
− α b− β

1− 2α

− Erf 1

2
− α a− β

1− 2α , (13)

where the coefficients of the polynomial, α, β and γ, are evaluated numerically using the
LSM discussed in Section 1.3. This is easily done in Matlab by specifying it to fit a
quadratic expression to the logarithm of data points generated from the modified Bessel
function of order zero.

2.1.2 An Approximation Based on Integral Representation (5): E2

Next we consider an approximation to the integrand in (5). We can, as previously, apply
the LSM to approximate the modified Bessel Function log(I0(ax)) with a quadratic curve,
where x ∈ [a, b]. As before, note that

b

a
x e−

1
2(x

2+a2)eαx
2+βx+γdx

= e−
1
2
a2+γ+ β2

2−4α
b

a
xe−(

1
2
−α)(x− β

1−2α)
2

dx

=
δ

1− 2α e−(
1
2
−α)(a− β

1−2α)
2

− e−( 12−α)(b− β
1−2α)

2

+
δβ
√
π

(2− 4α) 1
2 − α

Erf
1

2
− α b− β

1− 2α

− Erf 1

2
− α a− β

1− 2α , (14)

6
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where δ = e−
1
2
a2+γ+ β2

2−4α . Hence, by applying (14) to (5), and by an application of the
result to (1), we arrive at the estimator:

E2 =
1

2
1 + e−a

2
I0(a

2) − δ

1− 2α e−(
1
2
−α)(a− β

1−2α)
2

− e−( 12−α)(b− β
1−2α)

2

−1
2
e−

1
2(a

2+b2)I0(ab)

− δβ
√
π

(2− 4α) 1
2 − α

Erf
1

2
− α b− β

1− 2α

− Erf 1

2
− α a− β

1− 2α . (15)

2.2 Least Squares on a Semi-infinite Interval: E3

An LS estimator is now proposed, based upon the original Marcum Q-Function (2). As in
the previous Subsections, we can apply a quadratic approximation to the logarithm of the
modified Bessel function in the integrand of (2). By doing this, and applying the result to
(1), we arrive at the estimator:

E3 =
δ

1− 2α e−(
1
2)−α(b− β

1−2α)
2

−1
2
e−

1
2(a

2+b2)I0(ab)

+
δβ
√
π

(2− 4α) 1
2 − α

Erfc
1

2
− α b− β

1− 2α , (16)

where δ = e
1
2
a2+γ+ β2

2−4α and Erfc(·) is the complementary error function

Erfc(x) =
2√
π

∞

x
e−t

2
dt. (17)

Next we consider polynomial approximations of the entire integrand, using the LSM.

2.3 Polynomial Integrand Approximations

A number of polynomial approximations are now examined. In particular, we apply an
approximation with a polynomial of degree 5 to the entire integrand of the respective
integral.

7
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2.3.1 An Estimator Based on Integral Representation (6): E4

To begin, we apply this idea to the integrand of (6). In particular, xe−
1
2
x2I0(bx), can be

approximated by a fifth order polynomial, f(x) = α1x
5+α2x

4+α3x
3+α4x

2+α5x+α6,
where x ∈ [a, b]. It can be shown that

e−
1
2
b2

b

a
α1x

5 + α2x
4 + α3x

3 + α4x
2 + α5x+ α6 dx = e−

1
2
b2 [g(b)− g(a)] , (18)

where g(t) = α1
6 t

6 + α2
5 t

5 + α3
4 t

4 + α4
3 t

3 + α5
2 t

2 + α6t.

Applying (18) to (6), then (1), results in the following estimator:

E4 =
1

2
1− e−b2I0(b2) + 1

2
e−

1
2(a

2+b2)I0(ab)− e− 1
2
b2 [g(b)− g(a)] . (19)

The coefficients of the polynomial are estimated by the LSM in Matlab.

2.3.2 An Approximation Based on Integral Representation (8): E5

Using an argument similar to that as in the construction of (19), one can construct the
estimator

E5 =
1

2
e−

1
2(a

2+b2)I0(ab) + e
− 1
2
b2g(a) (20)

based upon (8).

2.3.3 An Estimator Based on the Transformed Integral Representation:
E6

Consider the transformation a =
√
2ς, b =

√
2τ and v = x2

2 (see [22] for details of this
transformation) of the integral (8). By applying the transformation to (8) and (1), we
arrive at the following expression for the BER:

BER(γ|ς, τ) = 1

2
e−(τ+ς)I0(2

√
τς) +

ς

0
e−(v+τ)I0(2

√
τv)dv. (21)

This suggests one can apply the LSM on the interval v ∈ [0, ς]. In view of this, the final LS
estimator we consider is based on the approximation of the integrand, e−(v+τ)I0(2

√
τv),

by a fifth order polynomial using the LSM on the interval v ∈ [0, ς]. This leads to the
following estimator:

E6 =
1

2
e−(τ+ς)I0(2

√
τς) + e−τg(ς). (22)

Next, we consider the Taylor Series Approach.

8
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2.4 Taylor Series Approaches: E7

Based upon Taylor Series, we derive an alternative estimator of the BER function (1)
using some known series representations of the Marcum Q-Function and the zeroth order
modified Bessel Function of the first kind. A widely known double series expansion ([24]
and [16]) of the standard Marcum Q-Function (2) is given by

Q(a, b) = e−(a
2+b2)

∞

k=0

a2

2

k

k!

k

j=0

b2

2

j

j!
. (23)

A well-known series representation of the zeroth order modified Bessel function I0(x) of
the first kind (see [2] and [21]) is

I0(x) =
∞

k=0

x

2

2k 1

(k!)2
. (24)

Equations (23) and (24) can be applied to the BER equation in (1). This yields a series
representation of the BER function, involving double series:

BER(γ|a, b) = e−(a
2+b2)

∞

k=0

a2

2

k

k!

k

j=0

b2

2

j

j!
− 1
2
e−

1
2(a

2+b2)I0(ab)

= e−(a
2+b2)

∞

k=0

⎡⎢⎣ a2

2

k

k!

k

j=0

b2

2

j

j!
− 1
2

1

k!

2 ab

2

2k

⎤⎥⎦
= e−(a

2+b2)
∞

k=0

a2

2

k

k!

⎡⎢⎣ k

j=0

b2

2

j

j!
− 1

2

k+1 1

k!
b2k

⎤⎥⎦ . (25)

Hence, we can easily construct an estimator of (1) by truncating this series to one with N
terms. As N increases without bound, the approximation becomes more accurate. Thus
we can propose the following estimator:

E7 = e
−(a2+b2)

N

k=0

a2

2

k

k!

⎡⎢⎣ k

j=0

b2

2

j

j!
− 1

2

k+1 1

k!
b2k

⎤⎥⎦ . (26)

The next section will examine the performance of the six LS estimators and this truncated
Taylor Series estimator. The results will be compared to that of ASQ.
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3 Performance Analysis

We now examine the performance of the seven estimators introduced in the previous
section. ASQ with a tolerance of 10−18 will be used as a benchmark of performance. As
ASQ is known to be reliable, it has been used by members of the Maritime Air Radar Group
in EWRD at DSTO extensively to estimate intractable integrals. It is interesting to see
whether any of the seven estimators have the same level of accuracy for less computation
time. Throughout we will measure γ in decibels (dB), and will be interested in values of
it ranging from 0 to 12dB, as considered in [6]. Appendix A contains all the figures, while
Appendix B contains tables, from this analysis.

3.1 LS Estimators E1, E2 and E3

We begin by analysing the first three estimators, E1, E2 and E3. Figure A.1 displays a plot
comparing estimates of E1 and ASQ, while Table B.1 displays corresponding numerical
estimates. Included in the table are the absolute and relative errors of the estimates, when
compared to ASQ. The estimates are obtained by fitting five points to the modified Bessel
Function. These results show that E1 performs well on the region γ < 1, with increasing
accuracy for small SNR values.

Next we examine E2. Figure A.2 provides a plot of E2 in comparison to ASQ. Table
B.2 provides the approximations of BER using E2. Observe that E2 outperforms E1 for
extremely small values of γ, more specifically, for γ ≤ 3. However, the accuracy worsens
dramatically for larger values of γ. Beyond γ > 8, E2 becomes relatively inaccurate, and
thus results are not included in Table B.2. The approximation in E2 performs well only
on the interval where γ is extremely small.

The performance of E3 can be viewed in Figure A.3, with numerical results in Table B.3. It
is interesting to note that the estimators E1 and E2 are generally superior to estimator E3
for small values of γ, but their performance deteriorates quickly. In contrast, E3 provides
better approximations for larger values of γ, and the accuracy improves as γ increases.
However, these three estimators have relatively large errors and are not entirely consistent
with ASQ. The accuracy can be slightly improved by increasing the number of points
being fitted to the modified Bessel Function.

As a final comparison of these three estimators, Figure A.4 shows all on the same plot,
with ASQ.

3.2 LS Estimators E4, E5 and E6

We now examine the estimators E4, E5 and E6. Figure A.5 provides a plot comparing
E4 and ASQ. In Table B.4, estimates of BER using E4 are compared with those obtained
via ASQ. The actual error and relative error are given, as previously. One hundred points
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equally spaced on the interval [a, b] are used for the LS computation. As can be observed,
this estimator gives better results than the estimators E1, E2 and E3 for small values of γ,
with increasing accuracy for smaller SNR values. However, the estimator’s performance
deteriorates rapidly for larger values of γ. To improve the accuracy, one can increase the
order of the polynomial and the number of points being fit to the modified Bessel Function.

Figure A.6 is a plot of the performance of estimator E5. As can be seen, there is a uniform
improvement in performance. Table B.5 confirms the improvement in terms of errors. We
observe that E5 is generally superior to E4. The results are accurate for a larger range of
γ values. Although the accuracy of the approximation decreases as γ increases, the rate
of deterioration is relatively slower than all estimators considered thus far.

We now consider the final LS estimator, E6. Figure A.7 shows its performance relative to
ASQ. This estimator proved to be the most accurate and efficient LS estimator. Included in
Figure A.7 are estimates derived from the results in [6], based upon (3). Table B.6 contains
results using E6, (3) and ASQ. Estimator E6 used 50 points for fitting the modified Bessel
function. Relative errors are given, with 1 that between E6 and ASQ, and 2 the relative
error given in [6]. As shown in Table B.6, E6 outperforms (3) and other LS estimators
discussed so far. It is worth noting that E6 provides extremely accurate results for the
entire range of γ values of interest. Notice that the actual error is relatively consistent.
As for γ larger than 12dB, the proposed approximation (3) in [6] remains a better choice.
E6 may be of practical interest when γ is less than 12dB, which as pointed out in [6], is
the region of interest.

Figure A.8 shows the three estimators considered in this subsection in the same plot, with
ASQ.

In addition, we experiment with the degree of the approximating polynomial, n, in E6. For
comparison, we include the results of E6 using n = 6 with (3) and (4) in [6] on the interval
γ between 0dB and 14dB in Table B.7 . The corresponding relative errors are shown. Note
that E6 using n = 6 provides better results, with accuracy as high as 2× 10−17 for some
values of γ. The approximations are of extremely high accuracy for the region of interest.
Figure A.9 provides a corresponding comparison plot. Figure A.10 shows an enlarged
image of Figure A.9 around γ = 13. The efficiency performance of E6 is analyzed in the
subsequent subsection. It is important to note that E6 is capable of improved accuracy
results by increasing the value of n, namely the degree of the LS polynomial. One can
vary the value of n to obtain the desired accuracy.

This completes our examination of LS estimators. We now investigate the Taylor Series
estimator, E7.

3.3 Taylor Series Estimator E7

The final estimator we consider is E7, which is based upon the truncated series in (26).
The partial sum uses 80 terms. Figure A.11 contains estimates of E7. It is worth noting
that the estimates given by (26) are extremely accurate, especially for small values of γ. It
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clearly outperforms the LS estimators given in the previous subsections. We do not include
a comparison plot between E6 and E7 because the errors in Table B.8, when compared to
the results in Table B.6, indicate an enormous improvement. Note that, for larger values
of γ, the relative error increases, but the accuracy can be further improved by increasing
N , the number of terms in the partial sum.

We now consider computational times associated with these estimators. We will, in par-
ticular, be interested in how well E6 and E7 perform relative to ASQ.

3.4 Time Performance Analysis

The previous subsections identified estimators E6 and E7 as having the most consistent
performance with ASQ, and in particular, E7 is the more accurate of the two. It will thus
be useful to investigate processing speeds associated with these estimators. Specifically,
we will be interested in knowing whether either one has comparable performance to ASQ
in shorter processing times.

The time performance of E7 is compared with E6 and ASQ in Figures A.12 and A.13, as
well as in Table B.9. Computation time is measured in seconds, while accuracy is specified
in negative powers of 10. Note that in view of Table B.9, E6 is the most efficient estimator,
while E7 is the second and ASQ the least. Moreover, E6 and E7 are very consistent. At
γ = 0dB, E6 obtained an exact result with a polynomial of degree n = 8, while E7 with a
Taylor Series with partial sum N = 12. In contrast, for ASQ, time complexity increases as
the accuracy increases. A plot of the results in Table B.9 is given in Figure A.12. Figure
A.13 gives an enlarged view of Figure A.12 at an accuracy of 10−15. Notice that E6 slightly
outperforms E7.
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4 Conclusion

This report investigated numerical estimates of the BER function, in particular, via LS and
Taylor Series approximations on the Marcum Q-Function. Using a number of finite integral
representations of the Marcum’s Q-Function, several LS estimators were derived. Three
were based on approximating the modified Bessel function by an exponential function with
quadratic argument (E1, E2, E2). Another three were based upon a fifth order polynomial
approximation of the entire integrand (E4, E5, E6). An estimator, based upon Taylor
Series was also introduced (E7).

Their accuracy and efficiency performances were analysed. All LS estimators perform
well on certain local regions. Results indicated that the estimators, E4, E5 and E6, were
generally superior to E1, E2 and E3. The optimal LS estimator identified in this report is
E6, providing the highest accuracy on the entire region of interest. It is the most efficient
estimator, with higher efficiency than the Taylor Series estimator E7.

From the accuracy perspective, E7 outperforms the LS estimators derived in this report.
High accuracy results were obtained at fast speed. It is worth noting that the series
approximation requires much less computation time than the ASQ approach to achieve
the same accuracy.

The results presented here also demonstrated that the estimates (3) and (4) from [6] can
be improved significantly within the region of interest (0 to 12dB), by using E6, but for
estimates greater than 12dB, the estimate (4) is suitable.

It is worth noting that the Least Squares Method is already available in the computer
language Matlab, and so the general methodology used here may be applied to estimate
other intractable integrals of interest.
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Appendix A: Comparsion Plots of the Estimators
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Figure A.1: A plot comparing E1 and ASQ for the region γ = 0dB to γ = 12dB. The
BER is given in a logarithmic scale. Observe that estimator E1 performs well for small
values of γ, specifically where γ ≤ 6dB.
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Figure A.2: Performance of E2 in comparision with ASQ on the interval γ = 0dB to γ =
8dB. The BER is given in a logarithmic scale. Estimator E2 provides good approximation
for γ ≤ 5dB, with increasing accuracy for smaller SNR values.
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Figure A.3: A plot displaying the performance of E3 in comparision to ASQ for γ = 0dB
to γ = 12dB. The BER are given in a logarithmic scale. Estimator E3 performs well for
larger values of γ, in particular, γ ≥ 10dB. Observe that accuracy increases as the SNR
increases.

18



DSTO—TN—0761

0 1 2 3 4 5 6 7 8
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

gamma (dB)

lo
g(

B
E

R
)

Plot of the BER 

ASQ
Estimator 1
Estimator 2
Estimator 3

Figure A.4: A Comparison of the three estimators E1, E2 and E3, with ASQ.
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Figure A.5: Performance of E4 in comparision with ASQ on the interval γ = 0dB to
γ = 10dB. The BER is given in a logarithmic scale. Notice that for γ beyond 8dB,
E4 begins to deviate from ASQ. Estimator E4 provides good approximation for the region
γ ≤ 8dB, with increasing accuracy for smaller SNR values.
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Figure A.6: A plot comparing E5 and ASQ for the region γ = 0dB to γ = 12dB. Observe
that E5 covers ASQ. For the range of γ values of interest, approximation E5 provides good
results. High accuracy approximations are obtained for γ ≤ 9dB.
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Figure A.7: Performance of E6 in comparision with ASQ on the interval γ = 0dB to
γ = 12dB. The BER is given in a logarithmic scale. Approximation E6 performs extremely
well on the region of interest, providing high accuracy results for γ ≤ 12dB.
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Figure A.8: A Comparison of the three estimators E4, E5 and E6, with ASQ.
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Figure A.9: A comparison plot of E6 using n = 6, (3), (4) and ASQ for γ = 0dB to
γ = 14dB. The BER is given in a logarithmic scale. Estimator E6 with n = 6 performs
extremely well on this region, providing extremely high accuracy results. Observe that E6
with n = 6 is almost exactly on ASQ.
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Figure A.10: An enlarged view of Figure A.9 around γ = 13. Note that BER using (4)
falls outside the region of the Figure. Observe how closely E6 approximate ASQ.
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Figure A.11: A plot of E7 and ASQ for γ = 0dB to γ = 12dB. The BER is given in a
logarithmic scale. Extremely high accuracy results is obtained using the series in (26) for
the entire region of interest.
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Figure A.12: Time performance plot of E6, E7 and ASQ. Time is in seconds and accuracy
is given in a logarithmic scale, base 10. Observe that both E6 and E7 are extremely efficient
in comparision with ASQ. Both E6 and E7 are very consistent, while ASQ depends heavily
on the degree of accuracy.
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Figure A.13: An enlarged view of Figure A.12 at 10−15, suggesting E6 is more efficient
than E7. Note that ASQ falls outside the region of the Figure.
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Appendix B: Tables of Numerical Results

γ(dB) ASQ E1 1 2

0 1.63907530399585e-001 1.64066250992386e-001 1.5872e-004 9.6835e-002%
1 1.30332229277756e-001 1.30554573532828e-001 2.2234e-004 1.7060e-001%
2 9.93324252133400e-002 9.96169239202047e-002 2.8450e-004 2.8641e-001%
3 7.18727612659082e-002 7.22160657416420e-002 3.4330e-004 4.7766e-001%
4 4.87488622380308e-002 4.91535216927732e-002 4.0466e-004 8.3009e-001%
5 3.04943244285625e-002 3.09694472029306e-002 4.7512e-004 1.5581e+000%
6 1.72359006046928e-002 1.77913923593411e-002 5.5549e-004 3.2229e+000%
7 8.58004434130124e-003 9.22092893335622e-003 6.4088e-004 7.4695e+000%
8 3.64294312896472e-003 4.36665001049495e-003 7.2371e-004 1.9866e+001%
9 1.26710356868390e-003 2.06276280461294e-003 7.9566e-004 6.2794e+001%
10 1.19230674177357e-003 3.43184596033452e-004 8.4912e-004 2.4742e+002%
11 9.46488998159275e-004 9.46488998159275e-004 8.7859e-004 1.2940e+003%
12 9.05258912217385e-006 8.90723374721225e-004 8.8167e-004 9.7394e+003%

Table B.1: A comparision of E1 and ASQ approximations, with a tolerance of 10
−18. Five

equally spaced points are used for fitting the modified Bessel function. 1 represents the
absolute error between E1 and ASQ, and 2 is the relative error

γ(dB) ASQ E2 1 2

0 1.63907530399585e-001 1.63896182918470e-001 1.1347e-005 6.9231e-003%
1 1.30332229277756e-001 1.30283201772424e-001 4.9028e-005 3.7617e-002%
2 9.93324252133400e-002 9.91910467676262e-002 1.4138e-004 1.4233e-001%
3 7.18727612659082e-002 7.15574732746942e-002 3.1529e-004 4.3868e-001%
4 4.87488622380308e-002 4.81818860883209e-002 5.6698e-004 1.1631e+000%
5 3.04943244285625e-002 2.96511574388189e-002 8.4317e-004 2.7650e+000%
6 1.72359006046928e-002 1.61643524537770e-002 1.0715e-003 6.2170e+000%
7 8.58004434130124e-003 7.35773400350712e-003 1.2223e-003 1.4246e+001%
8 3.64294312896472e-003 2.31931668012224e-003 1.3236e-003 3.6334e+001%

Table B.2: Approximations of BER(γ|a, b) based on estimator E2 on the interval γ = 0dB
to γ = 8dB. Five equally spaced points are used for fitting the modified Bessel function.

1 = |ASQ−E2| and 2 = 100× 1
ASQ .
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γ(dB) ASQ E3 1 2

0 1.63907530399585e-001 1.71550949650647e-001 7.6434e-003 4.6633e+000%
1 1.30332229277756e-001 1.37826804088733e-001 7.4946e-003 5.7504e+000%
2 9.93324252133400e-002 1.05719011266452e-001 6.3866e-003 6.4295e+000%
3 7.18727612659082e-002 7.64823916401551e-002 4.6096e-003 6.4136e+000%
4 4.87488622380308e-002 5.15201561338994e-002 2.7713e-003 5.6848e+000%
5 3.04943244285625e-002 3.18780295476395e-002 1.3837e-003 4.5376e+000%
6 1.72359006046928e-002 1.78165119904009e-002 5.8061e-004 3.3686e+000%
7 8.58004434130124e-003 8.78891826423036e-003 2.0887e-004 2.4344e+000%
8 3.64294312896472e-003 3.70801023832913e-003 6.5067e-005 1.7861e+000%
9 1.26710356868390e-003 1.28431703460022e-003 1.7213e-005 1.3585e+000%
10 1.19230674177357e-003 3.46862265107066e-004 3.6777e-006 1.0716e+000%
11 9.46488998159275e-004 6.84867934099513e-005 5.9167e-007 8.7144e-001%
12 9.05258912217385e-006 9.11841944014908e-006 6.5830e-008 7.2720e-001%

Table B.3: A comparision of E3 with ASQ approximations. Five equally spaced points are
used for fitting the modified Bessel function. 1 represents the relative error of E3 and 2

is the relative error.

γ(dB) ASQ E4 1 2

0 1.63907530399585e-001 1.63907488870700e-001 4.1529e-008 2.5337e-005%
1 1.30332229277756e-001 1.30332106347130e-001 1.2293e-007 9.4321e-005%
2 9.93324252133400e-002 9.93320691796630e-002 3.5603e-007 3.5843e-004%
3 7.18727612659082e-002 7.18718252819206e-002 9.3598e-007 1.3023e-003%
4 4.87488622380308e-002 4.87466026625585e-002 2.2596e-006 4.6351e-003%
5 3.04943244285625e-002 3.04892302562418e-002 5.0942e-006 1.6705e-002%
6 1.72359006046928e-002 1.72251622791136e-002 1.0738e-005 6.2302e-002%
7 8.58004434130124e-003 8.55909104642799e-003 2.0953e-005 2.4421e-001%
8 3.64294312896472e-003 3.60577177556770e-003 3.7171e-005 1.0204e+000%
9 1.26710356868390e-003 1.20888066573677e-003 5.8223e-005 4.5950e+000%
10 3.43184596033453e-004 2.67003180762893e-004 7.6181e-005 2.2198e+001%
11 6.78951281813439e-005 -3.69695411045479e-006 7.1592e-005 1.0545e+002%
12 9.05258912217385e-006 -2.75618525530374e-006 1.1809e-005 1.3045e+002%

Table B.4: Estimates of BER(γ|a, b) using E4 on the interval γ = 0dB to γ = 12dB.
100 equally spaced points are used for fitting the intergand in (6). 1 = |ASQ − E4| and
2 = 100× 1

ASQ .
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γ(dB) ASQ E5 1 2

0 1.63907530399585e-001 1.63907546749063e-001 1.5105e-008 9.2154e-006%
1 1.30332229277756e-001 1.30332244210175e-001 1.3768e-008 1.0564e-005%
2 9.93324252133400e-002 9.93324155663120e-002 1.0629e-008 1.0700e-005%
3 7.18727612659082e-002 7.18726865834308e-002 7.5848e-008 1.0553e-004%
4 4.87488622380308e-002 4.87486871417470e-002 1.7599e-007 3.6102e-004%
5 3.04943244285625e-002 3.04940693189189e-002 2.5575e-007 8.3867e-004%
6 1.72359006046928e-002 1.72356861246986e-002 2.1509e-007 1.2479e-003%
7 8.58004434130124e-003 8.58005712697456e-003 7.3343e-009 8.5480e-005%
8 3.64294312896472e-003 3.64328283674178e-003 3.3717e-007 9.2554e-003%
9 1.26710356868390e-003 1.26763628874464e-003 5.3069e-007 4.1882e-002%
10 3.43184596033453e-004 3.43637039076888e-004 4.4649e-007 1.3010e-001%
11 6.78951281813439e-005 6.81247127723810e-005 2.2577e-007 3.3250e-001%
12 9.05258912217385e-006 9.12061302541548e-006 6.7384e-008 7.4431e-001%

Table B.5: A comparision of the approximation of BER(γ|a, b) based on equation (20)
with that obtained via ASQ. 50 equally spaced points are used for fitting the intergrand in
(8). 1 = |ASQ−E5| and 2 = 100× 1

ASQ .

γ(dB) ASQ E6 1 BER in [6] 2

0 1.63907530399585e-001 1.63907530400071e-001 2.9656e-010% 1.73998678128697e-001 6.1566e+000%
1 1.30332229277756e-001 1.30332229279850e-001 1.6061e-009% 1.36604369075718e-001 4.8124e+000%
2 9.93324252133400e-002 9.93324252171851e-002 3.8709e-009% 1.02741930798427e-001 3.4324e+000%
3 7.18727612659082e-002 7.18727612659082e-002 1.2320e-008% 7.35176792703302e-002 2.2887e+000%
4 4.87488622380308e-002 4.87488621670844e-002 1.4553e-007% 4.94684302616405e-002 1.4761e+000%
5 3.04943244285625e-002 3.04943243033633e-002 4.1057e-007% 3.07841984642038e-002 9.5058e-001%
6 1.72359006046928e-002 1.72359008025161e-002 1.1477e-006% 1.73427752950751e-002 6.2007e-001%
7 8.58004434130124e-003 8.58004526916485e-003 1.0814e-005% 8.61510874905393e-003 4.0867e-001%
8 3.64294312896472e-003 3.64294348167390e-003 9.6820e-006% 3.65278932995171e-003 2.7028e-001%
9 1.26710356868390e-003 1.26710160675231e-003 1.5484e-004% 1.26936632743277e-003 1.7858e-001%
10 3.43184596033453e-004 3.43182757950219e-004 5.3560e-004% 3.43588251021892e-004 1.1762e-001%
11 6.78951281813439e-005 6.78960539104487e-005 1.3635e-003% 6.79475127646939e-005 7.7155e-002%
12 9.05258912217385e-006 9.05419050617861e-006 1.7690e-002% 9.05715038668292e-006 5.0386e-002%

Table B.6: Performance of E6, (3) and ASQ. 1 represents the relative error of E6 and 2

is the relative error given in [5]. Observe that E6 outperforms (3).
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γ(dB) ASQ E6 with n = 6 1 BER using (3) 2 BER using (4) 3

0 1.639075303e-001 1.639075303e-001 1.6934e-014% 1.739986781e-001 6.1566e+000% 2.254210348e-001 3.7529e+001%
1 1.303322292e-001 1.303322292e-001 1.4907e-013% 1.366043690e-001 4.8124e+000% 1.726326057e-001 3.2456e+001%
2 9.933242521e-002 9.933242521e-002 8.6621e-013% 1.027419307e-001 3.4324e+000% 1.271145833e-001 2.7969e+001%
3 7.187276126e-002 7.187276126e-002 1.1334e-011% 7.351767927e-002 2.2887e+000% 8.908322004e-002 2.3946e+001%
4 4.874886223e-002 4.874886223e-002 1.6426e-011% 4.946843026e-002 1.4761e+000% 5.866306626e-002 2.0337e+001%
5 3.049432442e-002 3.049432442e-002 4.7817e-010% 3.078419846e-002 9.5058e-001% 3.571928426e-002 1.7134e+001%
6 1.723590060e-002 1.723590060e-002 2.1835e-009% 1.734277529e-002 6.2007e-001% 1.970599722e-002 1.4331e+001%
7 8.580044341e-003 8.580044339e-003 1.5631e-008% 8.615108749e-003 4.0867e-001% 9.601935885e-003 1.1910e+001%
8 3.642943128e-003 3.642943125e-003 9.1022e-008% 3.652789329e-003 2.7028e-001% 4.001461897e-003 9.8415e+000%
9 1.267103568e-003 1.267103576e-003 5.8926e-007% 1.269366327e-003 1.7858e-001% 3.431846049e-004 8.0898e+000%
10 3.43184596e-004 3.431846049e-004 2.5988e-006% 3.435882510e-004 1.1762e-001% 7.155565315e-005 6.6184e+000%
11 6.78951116e-005 6.789511160e-005 2.4416e-005% 6.794751276e-005 7.7155e-002% 7.155565315e-005 5.3914e+000%
12 9.05258912e-006 9.052581472e-006 8.4507e-005% 9.057150386e-006 5.0386e-002% 9.448643705e-006 4.3750e+000%
13 7.34977835e-007 7.349868908e-007 1.2321e-003% 7.352186001e-007 3.2758e-002% 7.609826574e-007 3.5382e+000%
14 3.19776721e-008 3.198172372e-008 1.2670e-002% 3.198445315e-008 2.1205e-002% 3.288995544e-008 2.8529e+000%

Table B.7: A comparision of E6 with n = 6, approximations using [6] and ASQ on the
interval γ between 0dB and 14dB. 1 represents the relative error of E6 with n = 6, 2

indicates the relative error of (3)and 3 is the relative error of (4). Notice the high degree
of accuracy of E6 for small values of γ.

γ(dB) ASQ E7 1 2

0 1.63907530399585e-001 1.63907530399585e-001 0.0000e+000 0.0000e+000%
1 1.30332229277756e-001 1.30332229277756e-001 0.0000e+000 0.0000e+000%
2 9.93324252133400e-002 9.93324252133400e-002 0.0000e+000 0.0000e+000%
3 7.18727612659082e-002 7.18727612659082e-002 4.1633e-017 5.7926e-016%
4 4.87488622380308e-002 4.87488622380307e-002 5.5511e-017 1.1387e-015%
5 3.04943244285625e-002 3.04943244285625e-002 1.0408e-017 3.4132e-016%
6 1.72359006046928e-002 1.72359006046928e-002 1.7347e-017 1.0065e-015%
7 8.58004434130124e-003 8.58004434130123e-003 5.2042e-018 6.0654e-016%
8 3.64294312896472e-003 3.64294312896472e-003 4.3368e-019 1.1905e-016%
9 1.26710356868390e-003 1.26710356868390e-003 6.5052e-019 5.1339e-016%
10 3.43184596033453e-004 3.43184596033452e-004 3.7947e-019 1.1057e-015%
11 6.78951281813439e-005 6.78951281813436e-005 2.8460e-019 4.1918e-015%
12 9.05258912217385e-006 9.05258912217359e-006 2.5919e-019 2.8632e-014%

Table B.8: An approximation of BER(γ|a, b) based on a partial sum of 80 terms using
equation (26). 1 = |ASQ−E7| and 2 = 100× 1

ASQ .
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Accuracy ASQ E6 E7
10−8 3.7900e-002 3.7935e-003 3.6175e-003
10−9 4.6300e-002 3.7935e-003 4.3964e-003
10−10 6.1700e-002 3.7935e-003 5.4035e-003
10−11 8.6800e-002 6.5642e-003 5.4035e-003
10−12 1.3660e-001 6.5642e-003 6.6447e-003
10−13 2.1310e-001 6.5642e-003 6.6447e-003
10−14 4.3790e-001 5.7586e-003 8.7316e-003
10−15 4.8680e-001 5.7586e-003 1.0030e-002
10−16 8.6340e-001 5.7586e-003 1.0030e-002
10−17 1.2287e+000 5.7586e-003 1.2531e-002
10−18 1.9540e+000 5.8133e-003 1.2531e-002

Table B.9: Time performance of E6, E7 and ASQ. Time is given in seconds. Accuracy is
given by 10−m, where m ∈ {8, 9, . . . , 18}. Observe that E6 is the most efficient estimator,
with E7 following closely behind. ASQ is the least efficient, and time increases as the
accuracy increases. Both E6 and E7 are very consistent.
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